Compression for trace zero points on twisted Edwards curves

نویسندگان

  • Giulia Bianco
  • Elisa Gorla
چکیده

We propose two optimal representations for the elements of trace zero subgroups of twisted Edwards curves. For both representations, we provide efficient compression and decompression algorithms. The efficiency of the algorithm is compared with the efficiency of similar algorithms on elliptic curves in Weierstrass form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compression for Trace Zero Subgroups of Elliptic Curves

We give details of a compression/decompression algorithm for points in trace zero subgroups of elliptic curves over Fqr , for r = 3 and 5.

متن کامل

Division Polynomials for Twisted Edwards Curves

This paper presents division polynomials for twisted Edwards curves. Their chief property is that they characterise the n-torsion points of a given twisted Edwards curve. We also present results concerning the coefficients of these polynomials, which may aid computation.

متن کامل

Faster point scalar multiplication on NIST elliptic curves over GF(p) using (twisted) Edwards curves over GF(p³)

In this paper we present a new method for fast scalar multiplication on el-liptic curves over GF (p) in FPGA using Edwards and twisted Edwards curves over GF (p 3). The presented solution works for curves with prime group order (for example for all NIST curves over GF (p)). It is possible because of using 2-isogenous twisted Edwards curves over GF (p 3) instead of using short Weierstrass curves...

متن کامل

Decaf: Eliminating Cofactors Through Point Compression

We propose a new unified point compression format for Edwards, Twisted Edwards and Montgomery curves over large-characteristic fields, which effectively divides the curve’s cofactor by 4 at very little cost to performance. This allows cofactor-4 curves to efficiently implement prime-order groups.

متن کامل

Faster Pairing Computation

This paper proposes new explicit formulas for the doubling and addition step in Miller’s algorithm to compute pairings. For Edwards curves the formulas come from a new way of seeing the arithmetic. We state the first geometric interpretation of the group law on Edwards curves by presenting the functions which arise in the addition and doubling. Computing the coefficients of the functions and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2016